Abstract Submitted for the DFD15 Meeting of The American Physical Society

Relaxation of densely packed gel particles under cyclic shearing J.C. TSAI, Inst. of Physics, Academia Sinica, M.R. CHOU, P.C. HUANG, NTU, H.T. FEI, Inst. of Physics, Academia Sinica, J.R. HUANG, National Taiwan Normal University — We study experimentally the rheological response of fluid-immersed hydrogel particles. The particles are centimeter-sized and are driven by a roughened cone-shaped upper boundary, which imposes a cyclic shearing with a substantial stall period inserted between each reversal of its motion. The stall period reveals a characteristic timescale of relaxation belonging to these soft materials, in contrast to the build-up of stress that reflects a characteristic strain accumulated since each re-start of the shearing. We provide a coherent explanation on how the relaxation and the residual stress are related to observed steady-state rheology at different strain rates, and the use of a previously developed tomographical imaging technique allows us to look into the particle displacements during the relaxation.

M.R. Chou NTU

Date submitted: 01 Aug 2015

Electronic form version 1.4