Abstract Submitted for the DFD15 Meeting of The American Physical Society

Retrograde rotation of the large-scale flow in turbulent rotating Rayleigh-Benard convection with high Rossby number¹ JIN-QIANG ZHONG, HUI-MIN LI, XUE-YING WANG, Tongji University — We present measurements of the azimuthal orientation $\theta(t)$ of the large-scale circulation (LSC) for turbulent Rayleigh-Bénard convection in the presence of week rotations Ω . Linear retrograde rotations of the LSC circulating plane are observed over the entire Rossby-number range $(1 \le Ro \le 300)$ studied. When the Ro increases, the ratio of the retrograde rotation rate, $\gamma = -\langle \hat{\theta} \rangle / \Omega$ remains nearly a constant 0.12 in the range of $(1 \le Ro \le 80)$ and starts to increase when Ro > 80. When $Ro \simeq 300$, γ approaches a value of 0.36 close to the prediction from previous theoretical models. In a background of linear rotations, erratic changes in $\theta(t)$ accompanied by decreasing in the LSC amplitude δ are observed. These small- δ events give rise to the increasing γ with very high Ro numbers (80 < Ro < 300). In this range, the diffusivity of θ is proportional to δ^{-2} . Moreover, the occurrence frequency of the small- δ events, and their average duration are independent on Ro. We propose a model to include additional viscous damping for the LSC azimuthal motion due to turbulent viscosity and provide theoretical interpretations of the experimental results.

¹Work supported by NSFC Grant No. 11202151.

Jin-Qiang Zhong Tongji University

Date submitted: 01 Aug 2015

Electronic form version 1.4