Hydro-acoustic instabilities in compressible turbulent channel flow with porous walls. CARLO SCALO1, IMAN RAHBARI2, Purdue University — C. Scalo, J. Bodart, and S. K. Lele, Phys. Fluids (2015) manipulated wall-bounded compressible turbulence by applying impedance boundary conditions (IBC) acoustically tuned to the characteristic time scale of the large-scale eddies. Near-wall turbulence was overhauled by hydro-acoustic instabilities — comprised of coherent spanwise Kelvin-Helmholtz rollers driven by Helmholtz-like acoustic resonance — while outer-layer turbulence was left structurally unaltered. We discuss linear modeling results of the observed flow response, supported by new high-fidelity simulations up to transonic bulk Mach numbers. For IBCs with zero reactance, corresponding to a Darcy-like formulation for porous walls, two dominant modes are identified whose Reynolds stress distributions overlap with the impermeable-wall turbulent buffer layer, directly affecting the near-wall turbulence cycle. For the range of wavenumbers investigated, the transition from subcritical to supercritical permeability does not significantly alter the structure of the unstable modes, showing that wall-permeability accentuates pre-existing, otherwise stable, modes. Implications on flow control strategies for compressible boundary layers over porous walls are discussed.

1School of Mechanical Engineering
2School of Mechanical Engineering

Carlo Scalo
Purdue University

Date submitted: 01 Aug 2015
Electronic form version 1.4