Rotational Stabilization of Cylinder Wakes Using Linear Feedback Control

JEFF BORRGAARD, SERKAN GUGERCIN, LIZETTE ZIETSMAN, Virginia Tech — We demonstrate the feasibility of linear feedback control to stabilize vortex shedding behind twin cylinders using the cylinder rotations. Our approach is to linearize the flow about a desired steady-state flow, use interpolation-based model reduction on the resulting linear model to generate a low-dimensional model of the input-output system with input-independent error bounds, then use this reduced model to design the feedback control law. We then consider the practical issue of limited state measurements by building a nonlinear compensator that is computed from the same linear reduced-order model and constructed through an extended Kalman filter with a proper orthogonal decomposition (POD) model. Closed-loop simulations of the Navier-Stokes equations coupled with controls generated through flow measurements demonstrate the effectiveness of this control strategy.

Supported in part by the National Science Foundation