Abstract Submitted for the DFD16 Meeting of The American Physical Society

Buckling and stretching of thin viscous sheets DOIREANN O'KIELY, CHRIS BREWARD, IAN GRIFFITHS, PETER HOWELL, Mathematical Institute, University of Oxford, ULRICH LANGE, Schott AG — Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired center-line ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

Doireann O'Kiely Mathematical Institute, University of Oxford

Date submitted: 14 Jul 2016

Electronic form version 1.4