Heat and momentum transport scalings in vertical convection

OLGA SHISHKINA, Max Planck Institute for Dynamics and Self-Organization —

For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number N_u and the Reynolds number Re. For laminar vertical convection we derive analytically the dependence of Re and N_u on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: $N_u \sim Pr^{1/4}Ra^{1/4}$, $Re \sim Pr^{-1/2}Ra^{1/2}$ for $Pr \ll 1$ and $N_u \sim Pr^{0}Ra^{1/4}$, $Re \sim Pr^{-1}Ra^{1/2}$ for $Pr \gg 1$. Direct numerical simulations for Ra from 10^5 to 10^{10} and Pr from 0.01 to 30 are in excellent agreement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from Shishkina, Phys. Rev. E 93 (2016) 051102R and present new theoretical and numerical results for transitional and turbulent vertical convection.

The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the grant Sh 405/4 - Heisenberg fellowship.

Olga Shishkina
Max Planck Institute for Dynamics and Self-Organization

Date submitted: 23 Jul 2016

Electronic form version 1.4