Abstract Submitted for the DFD16 Meeting of The American Physical Society

Aspect-ratio dependence of the large-scale circulation in **Rayleigh-Bénard convection with weak rotation**¹ GUENTER AHLERS, Department of Physics, UCSB, PING WEI, School of Aerospace engineering and applied mechanics, Tongji U, Shanghai, China — We report measurements for slowly rotating turbulent thermal convection in cylindrical samples with aspect ratios $\Gamma = 1.0$ and 2.0 for a Prandtl number Pr = 12.3. The results are for the largescale circulation (LSC) strength δ , Fourier-energy E_{tot} , and relative flow strength S, as well as for two Reynolds numbers Re_{ret} and Re_{sl} , for the Nusselt number Nu, and for the vertical temperature gradient $\partial \Theta / \partial z$ at the sample center. They cover the Rayleigh-number range $3 \times 10^{10} \le Ra \le 4 \times 10^{11}$ and the inverse Rossbynumber range $0 \leq 1/Ro \leq 1/Ro_c$. Nu, E_{tot} , S, and $\partial \Theta/\partial z$ showed sharp transitions at $1/Ro_c$. The LSC underwent retrograde rotation with period τ_{ret} and showed sloshing oscillations with period $\tau_{sl} \ll \tau_{ret}$. At constant Ra and $1/Ro \ \delta$ grew and decayed with a period equal to τ_{ret} . We found that $Re_{ret} \equiv 4L^2/\tau_{ret}\nu \propto Ra^{0.65}$ $(\propto Ra^{0.50})$ for $\Gamma = 1.0$ ($\Gamma = 2.0$) (ν is the kinematic viscosity and L the sample height) and $Re_{sl} \equiv 4L^2/\tau_{sl}\nu \propto Ra^{0.50} \ (\propto Ra^{0.42})$ for $\Gamma = 1.0 \ (\Gamma = 2.0)$.

¹Supported by NSF grant DMR11-58514

Guenter Ahlers Department of Physics, UCSB

Date submitted: 26 Jul 2016

Electronic form version 1.4