Abstract Submitted for the DFD16 Meeting of The American Physical Society

Structure Functions in Wall-bounded Flows at High Reynolds Number XIANG YANG, Johns Hopkins University, IVAN MARUSIC, University of Melbourne, PERRY JOHNSON, CHARLES MENEVEAU, Johns Hopkins University — The scaling of the structure function $D_{ii} = \langle (u_i(\mathbf{x}+\mathbf{r})-u_i(\mathbf{x}))(u_i(\mathbf{x}+\mathbf{r}))(u_i(\mathbf{x}+\mathbf{r})-u_i(\mathbf{x}))(u_i(\mathbf{x}+\mathbf{r})-u_i(\mathbf{x}))(u_i(\mathbf{x}+\mathbf{r})-u_i(\mathbf{x}))(u_i(\mathbf{x}+\mathbf{r})-u_i(\mathbf{x}))(u_i(\mathbf{x}+\mathbf{r})-u_i(\mathbf{x}))(u_i(\mathbf{x}+\mathbf{r})-u_i(\mathbf{x}))(u_i(\mathbf{x}+\mathbf{r}))(u_i(\mathbf{x}+\mathbf{r})-u_i(\mathbf{x}))(u_i(\mathbf{x}+\mathbf{r}))(u_i(\mathbf{x}+\mathbf{r}))(u_i(\mathbf{x}+\mathbf{r}))(u_i$ $u_i(\mathbf{x})$ (where i = 1, 2, 3 and \mathbf{r} is the two-point displacement, u_i is the velocity fluctuation in the x_i direction), is studied in wall-bounded flows at high Reynolds number within the framework of the Townsend attached eddy model. While the scaling of D_{ij} has been the subject of several studies, previous work focused on the scaling of D_{11} for $\mathbf{r} = (\Delta x, 0, 0)$ (for streamwise velocity component and displacements only in the streamwise direction). Using the Hierarchical-Random-Additive formalism, a recently developed attached-eddy formalism, we propose closed-form formulae for the structure function D_{ij} with two-point displacements in arbitrary directions, focusing on the log region. The work highlights new scalings that have received little attention, e.g. the scaling of D_{ij} for $\mathbf{r}=(0, \Delta y, \Delta z)$ and for $i \neq j$. As the knowledge on D_{ij} leads directly to that of the Reynolds stress, statistics of the filtered flow field, etc., an analytical formula of D_{ij} for arbitrary **r** can be quite useful for developing physics-based models for wall-bounded flows and validating existing LES and reduced order models.

> Xiang Yang Johns Hopkins University

Date submitted: 27 Jul 2016

Electronic form version 1.4