Abstract Submitted for the DFD16 Meeting of The American Physical Society

Temperature variance profiles of turbulent thermal convection at high Rayleigh numbers¹ XIAOZHOU HE, Harbin Institute of Technology Shenzhen Graduate School, EBERHARD BODENSCHATZ, Max Planck Institute for Dynamics and Self-Organization, GUENTER AHLERS, University of California Santa Barbara — We present measurements of the Nusselt number Nu, and of the temperature variance σ^2 as a function of vertical position z, in turbulent Rayleigh-Bénard convection of two cylindrical samples with aspect ratios (diameter D/height L) $\Gamma = 0.50$ and 0.33. Both samples had D = 1.12 m but different L. We used compressed SF_6 gas at pressures up to 19 bars as the fluid. The measurements covered the Rayleigh-number range $10^{13} < Ra < 5 \times 10^{15}$ at a Prandtl number $Pr \simeq 0.80$. Near the side wall we found that σ^2 is independent of Ra when plotted as a function of z/λ where $\lambda \equiv L/(2Nu)$ is a thermal boundary-layer thickness. The profiles $\sigma^2(z/\lambda)$ for the two Γ values overlapped and followed a logarithmic function for 20 $\lesssim \, z/\lambda \, \lesssim \,$ 120. With the observed "-1"-scaling of the temperature power spectra and on the basis of the Perry-Townsend similarity hypothesis, we derived a fitting function $\sigma^2 = p_1 \ln(z/\lambda) + p_2 + p_3(z/\lambda)^{-0.5}$ which describes the σ^2 data up to $z/\lambda \simeq 1500$.

¹Supported by the Max Planck Society, the Volkswagenstiftung, the DFD Sonderforschungsbereich SFB963, and NSF Grant DMR11-58514.

> Xiaozhou He Harbin Institute of Technology Shenzhen Graduate School

Date submitted: 28 Jul 2016

Electronic form version 1.4