Abstract Submitted for the DFD16 Meeting of The American Physical Society

Scale-dependent entrainment velocity and scale-independent net entrainment in a turbulent axisymmetric jet¹ JIMMY PHILIP, University of Melbourne, DHIREN MISTRY, JAMES DAWSON, Norwegian University of Science and Technology, IVAN MARUSIC, University of Melbourne — The net entrainment in a jet is the product of the mean surface area (\overline{S}) and the mean entrainment velocity, \overline{V} \overline{S} , where, $\overline{V} = \alpha U_c$ with α the entrainment coefficient and U_c the mean centreline velocity. Instantaneously, however, entrainment velocity (v) at a point on the interface is the difference between the interface and the fluid velocities, and the total entrainment $\int v \, ds = V S$, where S is the corrugated interface surface area and V the area averaged entrainment velocity. Using time-resolved multi-scale PIV/PLIF measurements of velocity and scalar in an axisymmetric jet at Re =25000, we evaluate V and S directly at the smallest resolved scales, and by filtering the data at different scales (Δ) we find their multi-scales counterparts, V_{Δ} and S_{Δ} . We show that $\overline{V} \ \overline{S} = V_{\Delta} \ S_{\Delta} = V \ S$, independent of the scale. Furthermore, S is found to have a fractal dimension $D_3 \approx 2.32 \pm 0.1$. Independently, we find that $V_{\Delta} \sim \Delta^{0.31}$, indicating increasing entrainment velocity with increasing length scale. This is consistent with a constant net entrainment across scales, and suggests α as a scale-dependent quantity.

¹Engineering and Physical Sciences Research Council (research grant no. EP/I005879/1), David Crighton Fellowship from the DAMTP, Univ of Cambridge, and the Australian Research Council.

Jimmy Philip University of Melbourne

Date submitted: 29 Jul 2016

Electronic form version 1.4