The interaction between atmospheric gravity waves and large-scale flows: an efficient description beyond the non-acceleration paradigm

BRUNO RIBSTEIN, CMLA, ENS, F-94230, Cachan, France and LMD, ENS, F-75005, Paris, France, GERGELY BLNI, JEWGENIJA MURASCHKO, CHRISTINE SGOFF, JUNHONG WEI, ULRICH ACHATZ, Goethe University Frankfurt, Frankfurt am Main, Germany — With the aim of contributing to the improvement of subgrid-scale gravity wave (GW) parameterizations in numerical-weather-prediction and climate models, the comparative relevance in GW drag of direct GW-mean-flow interactions and turbulent wave breakdown are investigated. Of equal interest is how well Wentzel-Kramer-Brillouin (WKB) theory can capture direct wave-mean-flow interactions, that are excluded by applying the steady-state approximation. WKB is implemented in a very efficient Lagrangian ray-tracing approach that considers wave action density in phasespace, thereby avoiding numerical instabilities due to caustics. It is supplemented by a simple wave-breaking scheme based on a static-instability saturation criterion. Idealized test cases of horizontally homogeneous GW packets are considered where wave-resolving Large-Eddy Simulations (LES) provide the reference. In all of theses cases the WKB simulations including direct GW-mean-flow interactions reproduce the LES data, to a good accuracy, already without wave-breaking scheme. The latter provides a next-order correction that is useful for fully capturing the total-energy balance between wave and mean flow. This is not the case when a steady-state WKB implementation is used, as used in present GW parameterizations.