Arrested bubble 'rise' in a narrow tube1 CATHERINE LAMSTAES, JENS EGGERS, University of Bristol — A long air bubble placed inside a vertical tube closed at the top rises by displacing the fluid above it. Bretherton, however, found that if the tube radius, R, is smaller than a critical value $R_c = 0.918 \ell_c$, where $\ell_c = \sqrt{\gamma / \rho g}$ is the capillary length, there is no solution corresponding to steady rise. We explain this finding by studying the unsteady bubble motion for $R < R_c$. We show the minimum spacing between the bubble and the tube goes to zero like $t / t^4 = 5$ in limit of large time t. This leads to a rapid slow-down of the bubble’s mean speed $U \propto -t^{-2}$, giving the appearance of arrested motion. What may seem surprising is that U is negative: the bubble moves down rather than up. We explain this observation by the bubble’s expansion to the walls of the tube, pushing fluid in the direction opposite to gravity.

1EPSRC

Catherine Lamstaes
University of Bristol

Date submitted: 29 Jul 2016

Electronic form version 1.4