New variational bounds on convective transport. II. Computations and implications1 ANDRE SOUZA, Georgia Tech, IAN TOBASCO, CHARLES R. DOERING, Univ of Michigan - Ann Arbor — We study the maximal rate of scalar transport between parallel walls separated by distance h, by an incompressible fluid with scalar diffusion coefficient κ. Given velocity vector field \mathbf{u} with intensity measured by the Péclet number $Pe = h^2 \langle |\nabla \mathbf{u}|^2 \rangle^{1/2}/\kappa$ (where $\langle \cdot \rangle$ is space-time average) the challenge is to determine the largest enhancement of wall-to-wall scalar flux over purely diffusive transport, i.e., the Nusselt number Nu. Variational formulations of the problem are studied numerically and optimizing flow fields are computed over a range of Pe. Implications of this optimal wall-to-wall transport problem for the classical problem of Rayleigh-Bénard convection are discussed: the maximal scaling $Nu \sim Pe^{2/3}$ corresponds, via the identity $Pe^2 = Ra (Nu - 1)$ where Ra is the usual Rayleigh number, to $Nu \sim Ra^{1/2}$ as $Ra \to \infty$.

1Supported in part by National Science Foundation Graduate Research Fellowship DGE-0813964, awards OISE-0967140, PHY-1205219, DMS-1311833, and DMS-1515161, and the John Simon Guggenheim Memorial Foundation.

Andre Souza
Univ of Michigan - Ann Arbor

Date submitted: 29 Jul 2016

Electronic form version 1.4