Flame speeds and curvature of premixed, spherically expanding flames advecting in a turbulent channel flow1 DAN FRIES, BRADLEY OCHS, DEVESH RANJAN, SURESH MENON, Georgia Institute of Technology —
A new facility has been developed at the Georgia Institute of Technology to study sub- and supersonic combustion, which is based on classical flame bomb studies but incorporates a mean flow, allowing for a wider variety of turbulent conditions and the inclusion of effects like compressibility, while supporting shear-free spherical flames. Homogeneous, isotropic turbulence is generated via an active vane grid. Methane-air flame kernels advecting with the mean flow are generated using Laser Induced Breakdown ignition. The facility is accessing the thin reaction zone regime with $u^\prime_{\text{RMS}}/S^0_L = 6.9 – 22$, $L_{11}/\delta_F = 44 – 68$ and $Re_\lambda = 190 – 550$. The flame kernels are probed with OH-Planar Laser Induced Fluorescence (PLIF). To validate the facility, results at $\bar{U} = 30$ m/s are compared to existing data using a scaling derived from a spectral closure of the G-equation. This indicates the reacting flow remains Galilean invariant under the given conditions. The differences between global and local turbulent consumption speeds derived from OH-PLIF results are discussed with a focus on modeling efforts. The curvature of flame wrinkles is evaluated to examine the impact of different turbulent scales on flame development.

1This work was supported by the Air Force Office of Scientific Research under basic research grant FA9550-15-1-0512 (Project monitor: Dr. Chiping Li)