Abstract Submitted for the DFD16 Meeting of The American Physical Society

Turbulent pipe flows subjected to temporal decelerations¹ WONG-WAN JEONG, HYUNGJAE LIM, JAE HWA LEE, Ulsan Natl Inst of Sci Tech — Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, $Re_D=24380$, based on the pipe radius (R) and the laminar centerline velocity (U_{c0}) . Three different temporal decelerations were imposed to the initial flow with $f = |dU_b/dt| = 0.00127$, 0.00625 and 0.025, where U_b is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λ_x) 1R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations.

¹This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

Wongwan Jeong Ulsan Natl Inst of Sci Tech

Date submitted: 13 Oct 2016

Electronic form version 1.4