Abstract Submitted for the DFD16 Meeting of The American Physical Society

Modeling of stochastic dynamics of time-dependent flows under high-dimensional random forcing¹ HESSAM BABAEE, MIT, GEORGE KARNIADAKIS, Brown University — In this numerical study the effect of highdimensional stochastic forcing in time-dependent flows is investigated. To efficiently quantify the evolution of stochasticity in such a system, the dynamically orthogonal method is used. In this methodology, the solution is approximated by a generalized Karhunen-Loeve (KL) expansion in the form of $\mathbf{u}(\mathbf{x}, \mathbf{t}; \omega) =$ $\overline{\mathbf{u}}(\mathbf{x}, \mathbf{t}) + \sum_{i=1}^{N} \mathbf{y}_i(\mathbf{t}; \omega) \mathbf{u}_i(\mathbf{x}, \mathbf{t})$, in which $\overline{\mathbf{u}}(\mathbf{x}, \mathbf{t})$ is the stochastic mean, the set of $\mathbf{u}_i(\mathbf{x}, \mathbf{t})$'s is a deterministic orthogonal basis and $\mathbf{y}_i(\mathbf{t}; \omega)$'s are the stochastic coefficients. Explicit evolution equations for $\overline{\mathbf{u}}$, \mathbf{u}_i and \mathbf{y}_i are formulated. The elements of the basis $\mathbf{u}_i(\mathbf{x}, \mathbf{t})$'s remain orthogonal for all times and they evolve according to the system dynamics to capture the energetically dominant stochastic subspace. We consider two classical fluid dynamics problems: (1) flow over a cylinder, and (2) flow over an airfoil under up to one-hundred dimensional random forcing. We explore the interaction of intrinsic with extrinsic stochasticity in these flows.

¹DARPA N66001-15-2-4055, Office of Naval Research N00014-14-1-0166

Hessam Babaee MIT

Date submitted: 31 Jul 2016

Electronic form version 1.4