Abstract Submitted for the DFD16 Meeting of The American Physical Society

Fundamental Entrainment Observations (VSL, etc.) for a SSSL JOHN FOSS, Michigan State University, KYLE BADE, Spraying Systems Co., DOUGLAS NEAL, RICHARD PREVOST, LaVision Inc. — Fundamental observations of the entrainment process on the low speed side of a high Re self-preserving single stream shear layer have been made using PIV realizations. The Re value was: $U_0\theta_{mid}/\nu = 6.75*10^4$, where $\theta_{mid} = 13.7$ cm is the momentum thickness at the midlocation $(x/\theta(0) = 390)$ of the observations. The VSL (Viscous Super Layer), 15-20 η_K thick, is bounded by a well-defined border where the non-vortical/vortical transition occurs. The Kolmogorov microscale (η_K) was determined from the mean-square vorticity adjacent to the VSL. A threshold level to define the border $(\omega_z \theta_{mid}/U_0 =$ 0.221) was selected by examination of the data. Quantitative measures of the entrainment process have been obtained, including: i) the convoluted length of the border (L_b) made non-dimensional with respect to the length (L_m) of the temporally averaged flow field $(L_b/L_m=2.8)$ and ii) $\langle v_b^2 \rangle/v_e^2=17$, as a measure of the sink-effect at the border. v_b is the measured velocity at the border; v_e is the wellestablished entrainment velocity far from the active shear layer whose value: v_e/U_0 = 0.035, corresponds to the growth of the self-preserving SSSL $(d\theta/dx)$.

Kyle Bade Spraying Systems Co.

Date submitted: 31 Jul 2016 Electronic form version 1.4