Inverse Saffman-Taylor instability in Hele-Shaw experiments using micro-particles¹ FARZAM ZOUESHTIAGH, University of Lille, IEMN-CNRS 8520, ILYESSE BIHI, University of Lille, IEMN-CNRS 8520, University of Florida, JASON BUTLER, University of Florida, CHRISTINE FAILLE, University of Lille, INRA-PIHM, MICHAL BAUDOIN, University of Lille, IEMN-CNRS 8520 — Saffman-Taylor instability can occur when a low viscosity fluid displaces one of higher viscosity. It results from the decrease of the flow resistance as the fluid of lower viscosity replaces the more viscous one. This Saffman-Taylor instability is revisited experimentally for the inverse case of a viscous fluid displacing air when partially wetting particles are lying on the walls. Though the inverse case is otherwise stable, the presence of the particles results in a fingering instability at low capillary number. This capillary-driven instability is driven by the integration of particles into the interface which results from the minimization of the interfacial energy [1].


¹We acknowledge the support from the Marie Curie International Research Staff Exchange Scheme Fellowship (Patterns and Surfaces No. 269207) within the 7th European Community Framework Programme.