Quincke rotation of an ellipsoid

PETIA VLAHOVSKA, QUENTIN BROSSEAU, Brown University — The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field: spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke roller: an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement.

1Supported by NSF CBET awards 1437545 and 1544196