Abstract Submitted for the DFD16 Meeting of The American Physical Society

Influence of large-scale low- and high-speed structures on the near-wall vortical motions in turbulent boundary layer¹ JINYUL HWANG, HYUNG JIN SUNG, KAIST — Direct numerical simulation data of turbulent boundary layer ($Re_{\tau} = 1000$) are used to investigate the large-scale influences on the vortical structures in the near-wall region. The streamwise swirling strength (λ_x) depends on the strength of large-scale streamwise velocity fluctuations (u_l) . The amplitude of λ_x decreases under the negative u_l rather than the positive u_l analogous to the amplitude modulation of the velocity fluctuations. The dependence of λ_x on u_l is due to the opposite spanwise motions in the footprints of low- and highspeed structures, which are congregative and dispersive, respectively. Conditionally averaged fields conditioned on λ_x under the negative- and positive- u_l events show that the swirling motions lie within the congregative and dispersive motions. The dispersive motion is more intense than the congregative motion because the sweep of high-momentum fluid under $u_l > 0$ splats on the wall while the spanwise motions under $u_l < 0$ decrease as the flows come close to each other. Due to the strong dispersive motion, the small-scale spanwise velocity fluctuations (w_s) are strengthened, whereas w_s are relatively weak (attenuated) under $u_l < 0$. As a result, the wall-normal components are also enhanced under $u_l > 0$, which contributes to the amplification of λ_x .

¹This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

Jinyul Hwang KAIST

Date submitted: 31 Jul 2016

Electronic form version 1.4