Abstract Submitted for the DFD16 Meeting of The American Physical Society

Patterns in swelling hydrogels CHRIS MACMINN, Department of Engineering Science, University of Oxford, THIBAULT BERTRAND, Department of Mechanical Engineering and Materials Science, Yale University, JORGE PEIX-INHO, Laboratoire Ondes et Milieux Complexes, CNRS & Université de Normandie, SHOMEEK MUKHOPADHYAY, Department of Geology and Geophysics, Yale University — Swelling is a process in which a porous material spontaneously grows by absorbing additional pore fluid. Polymeric hydrogels are highly deformable materials that can experience very large volume changes during swelling. This allows a small amount of dry gel to absorb a large amount of fluid, making gels extremely useful in applications from moisture control to drug delivery. However, a well-known consequence of these extreme volume changes is the emergence of a striking morphological instability. We study the transient mechanics of this instability here by combining a theoretical model with a series of simple experiments, focusing on the extent to which this instability can be controlled by manipulating the rate of swelling.

> Chris MacMinn Department of Engineering Science, University of Oxford

Date submitted: 01 Aug 2016

Electronic form version 1.4