Characterization of interfacial waves in horizontal core-annular flow

SUMIT TRIPATHI, IITB-Monash Research Academy, Mumbai, India, AMITABH BHATTACHARYA, RAMESH SINGH, Department of Mechanical Engineering, IIT Bombay, India, RICO F. TABOR, School of Chemistry, Monash University, Australia — In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Q_o) and water (Q_w). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than $2\pi/a$, where a is the thickness of the annulus. Second, for high Q_o/Q_w, there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Q_o/Q_w, a dominant mode arises at a wavenumber of $2\pi/a$. We also observe that the power spectrum of the interface shape depends weakly on Q_w, and strongly on Q_o, perhaps because the net shear rate in the annulus appears to depend weakly on Q_w as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity.

1Authors are thankful to Orica Mining Services (Australia) for the financial support

SUMIT TRIPATHI
IITB-Monash Research Academy, Mumbai, India

Date submitted: 01 Aug 2016

Electronic form version 1.4