Metriplectic simulated annealing for quasigeostrophic flow1 P.J. MORRISON, The University of Texas at Austin, G.R. FLIERL, MIT — Metriplectic dynamics [1,2] is a general form for dynamical systems that embodies the first and second laws of thermodynamics, energy conservation and entropy production. The formalism provides an H-theorem for relaxation to nontrivial equilibrium states. Upon choosing enstrophy as entropy and potential vorticity of the form $q = \nabla^2 \psi + T(x)$, recent results of computations, akin to those of [3], will be described for various topography functions $T(x)$, including ridge ($T = \exp(-x^2/2)$) and random functions. Interpretation of the results, in particular their sensitivity to the chosen entropy function will be discussed.

1PJM supported by U.S. Dept. of Energy Contract # DE-FG05-80ET-53088.