Flow-driven Assembly of Microcapsule Towers

HENRY SHUM, ANNA BALAZS, University of Pittsburgh — Large populations of the slime mold, Dictyostelium discoideum, are able to aggregate over a surface and collectively form a long, vertical stalk. Inspired by this biological behavior, we develop a synthetic mechanism for assembling tower-like structures using microcapsules as the building blocks. We accomplish this in simulations by generating a fluid flow field that draws microcapsules together along a surface and lifts them up at a central point. We considered a fluid flow generated by the local release of a chemical species from a patch on the surface. The concentration gradient of the diffusing chemical species causes radial diffusioosmotic flow along the solid surface toward the patch. Adhesive interactions keep the microcapsules attached to the surface as they are drawn together above the patch. To build a tower-like structure, some of the microcapsules must detach from the surface but remain attached to the rest of the cluster. The upward directed fluid flow above the patch then draws out the cluster into a tower shape. The final morphology of the aggregate structure depends on the flow field, the adhesive capsule-capsule and capsule-surface interaction strengths, and the sedimentation force on the capsules. Tuning these factors changes the structures that are produced.

Henry Shum
University of Pittsburgh

Date submitted: 01 Aug 2016
Electronic form version 1.4