Abstract Submitted for the DFD16 Meeting of The American Physical Society

PSH3D fast Poisson solver for petascale DNS DARREN ADAMS, University of Illinois, NCSA, MICHAEL DODD, ANTONINO FERRANTE, University of Washington, Seattle — Direct numerical simulation (DNS) of high Reynolds number, $Re \geq O(10^5)$, turbulent flows requires computational meshes $\geq O(10^{12})$ grid points, and, thus, the use of petascale supercomputers. DNS often requires the solution of a Helmholtz (or Poisson) equation for pressure, which constitutes the bottleneck of the solver. We have developed a parallel solver of the Helmholtz equation in 3D, PSH3D. The numerical method underlying PSH3D combines a parallel 2D Fast Fourier transform in two spatial directions, and a parallel linear solver in the third direction. For computational meshes up to 8192^3 grid points, our numerical results show that PSH3D scales up to at least 262k cores of Cray XT5 (Blue Waters). PSH3D has a peak performance $6 \times$ faster than 3D FFT-based methods when used with the 'partial-global' optimization, and for a 8192^3 mesh solves the Poisson equation in 1 sec using 128k cores. Also, we have verified that the use of PSH3D with the 'partial-global' optimization in our DNS solver does not reduce the accuracy of the numerical solution of the incompressible Navier-Stokes equations.

> Antonino Ferrante University of Washington, Seattle

Date submitted: 01 Aug 2016

Electronic form version 1.4