Abstract Submitted for the DFD16 Meeting of The American Physical Society

Rayleigh-Plateau instability of slipping viscous filaments in vshaped grooves MARTIN BRINKMANN, TAK SHING CHAN, RALF SEE-MANN, Experimental Physics, Saarland University — Since the seminal works of Rayleigh and Plateau on the break-up of free-standing liquid jets, a large number of studies have addressed capillary instability of cylindrical interfaces in various settings. Here, we report the numerical results of a linear stability analysis of cylindrical liquid filament wetting v-shaped grooves employing a boundary element formalism. It is found that slip affects the wavelength λ^{\max} of the fastest growing mode whenever the transverse dimension W of the filaments is comparable, or smaller than the Navier slip-length B. The corresponding timescale of the decay, τ^{max} , grows logarithmically with increasing B/W. In the opposite limit $B/W \ll 1$, however, λ^{max} grows unboundedly with increasing B/W while τ^{max} saturates to a finite lower bound, similar to the situation observed for free-standing viscous liquid cylinders in the absence of inertial effects. Long wavelength approximations of the flows for $B/W \ll W$ and $B/W \gg 1$ are in good agreement with the numerical results only for contact angles $0 < \theta - \psi \ll 1$ where the neutrally stable wavelength $\lambda^* < \lambda^{max}$ is large compared to the transverse filament dimension W.

> Martin Brinkmann Experimental Physics, Saarland University

Date submitted: 01 Aug 2016

Electronic form version 1.4