Abstract Submitted
for the DFD16 Meeting of
The American Physical Society

Subsurface Droplet Size Distribution generated as breaking waves
entrain an oil slick

CHENG LI, JESSE MILLER, JOSEPH KATZ, Johns Hopkins University — Breaking waves are a primary mechanism for entraining and dispersing oil spills. Knowledge of the resulting droplet size distribution is crucial for predicting the transport and fate of this oil. In this on-going experimental study, a controlled oil slick of varying viscosity (μ_d), density (ρ_d), interfacial tension (σ), and thickness δ =0.5mm are entrained by waves of varying energy (E_w). The changes to droplet size over time, from seconds to hours, are measured at several locations using multi-resolution holography, which covers sizes ranging from μm to mm. Using dispersants to reduce σ, the Webber number, $We= E_w \delta /\sigma$, and Ohnesorge number, $Oh= \mu_d / (\rho_d \delta \sigma)^{0.5}$, are varied from 6 to 813 and from 0.09 to 0.95, respectively. Droplets smaller than the turbulence scale (2-30 μm – diameter), are generated by “micro-threading”. Their size distribution becomes steeper and their total number increase substantially with decreasing interfacial tension. For slopes smaller than -3, measured for σ around 10^{-1} mN/m, the volumetric size distribution decreases with diameter, i.e. most of the oil breaks into micron-scale droplets. For high interfacial tension oil, the concentration of small droplets increases with wave energy, but this effect diminishes as σ decreases. Droplets larger than 100 μm are generated by turbulent shear. Hence, their number is impacted by μ_d and E_w. Increasing We from 6 to 15 (Oh from 0.09 to 2.95) increases the initial number of droplets by up to 5 times, but the distribution slopes remain largely similar.

1Supported by Gulf of Mexico Research Initiative (GoMRI)

Cheng Li
Johns Hopkins University

Date submitted: 01 Aug 2016

Electronic form version 1.4