Simulations of Shock Wave Interaction with a Particle Cloud

RAHUL KONERU, CCMT-University of Florida, BERTRAND ROLLIN, Embry-Riddle Aeronautical University, FREDERICK OUELLET, SUBRAMANIAN ANNAMALAI, S. 'BALA' BALACHANDAR, CCMT-University of Florida — Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multi-phase Shock Tube experiments, and the shock Mach number is limited to M=1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented.

This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

Bertrand Rollin
Embry-Riddle Aeronautical University

Date submitted: 02 Aug 2016