Emergence of power-law scalings in shock-driven mixing transition1 PETER VOROBIEFF, PATRICK WAYNE, DELL OLMSTEAD, DYLAN SIMONS, C. RANDALL TRUMAN, University of New Mexico, SANJAY KUMAR, Indian Institute of Technology - Kanpur — We present an experimental study of transition to turbulence due to shock-driven instability evolving on an initially cylindrical, diffuse density interface between air and a mixture of sulfur hexafluoride (SF\textsubscript{6}) and acetone. The plane of the shock is at an initial angle θ with the axis of the heavy-gas cylinder. We present the cases of planar normal ($\theta = 0$) and oblique ($\theta = 20^\circ$) shock interaction with the initial conditions. Flow is visualized in two perpendicular planes with planar laser-induced fluorescence (PLIF) triggered in acetone with a pulsed ultraviolet laser. Statistics of the flow are characterized in terms of the second-order structure function of the PLIF intensity. As instabilities in the flow evolve, the structure functions begin to develop power-law scalings, at late times manifesting over a range of scales spanning more than two orders of magnitude. We discuss the effects of the initial conditions on the emergence of these scalings, comparing the fully three-dimensional case (oblique shock interaction) with the quasi-two-dimensional case (planar normal shock interaction). We also discuss the flow anisotropy apparent in statistical differences in data from the two visualization planes.

1This work is funded by NNSA grant DE-NA0002913