Abstract Submitted
for the DFD17 Meeting of
The American Physical Society

Coherence resonance in low-density jets1 YUANHANG ZHU, Hong Kong University of Science and Technology, VIKRANT GUPTA, Southern University of Science and Technology, LARRY K.B. LI, Hong Kong University of Science and Technology — Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jets response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a systems nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control.

1This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

Yuanhang Zhu
Hong Kong University of Science and Technology

Date submitted: 21 Jul 2017

Electronic form version 1.4