Viscous-enstrophy scaling law for Navier-Stokes reconnection
ROBERT M. KERR, University of Warwick — Simulations of perturbed, helical trefoil vortex knots and anti-parallel vortices find \(\nu \)-independent collapse of temporally scaled \((\sqrt{\nu}Z)^{-1/2} \), \(Z \) enstrophy, between when the loops first touch at \(t_\Gamma \), and when reconnection ends at \(t_x \) for the viscosity \(\nu \) varying by 256. Due to mathematical bounds upon higher-order norms, this collapse requires that the domain increase as \(\nu \) decreases, possibly to allow large-scale negative helicity to grow as compensation for small-scale positive helicity and enstrophy growth. This mechanism could be a step towards explaining how smooth solutions of the Navier-Stokes can generate finite-energy dissipation in a finite time as \(\nu \to 0 \).