Numerical simulation of fluid-structure interaction of turbulent boundary layer with an elastic plate

SREEVATSA ANANTHARAMU, KRISHNAN MAHESH, University of Minnesota - Twin Cities — Understanding the influence of turbulent boundary layer wall-pressure fluctuations on elastic structures is essential to understand the acoustic radiation to far-field due to their vibration. A parallel unsteady structural solver is being developed to solve linear/nonlinear elasticity problems using Finite Element Method. Several wall-pressure cross-spectral density models have been proposed in literature for turbulent boundary layers. A methodology will be discussed to synthetically generate space-time wall-pressure fluctuations given its cross-spectral density. The cross-spectral density of plate displacement from Poisson-Kirchhoff theory will be compared to the results obtained numerically using the synthetically generated pressure fluctuations. Pressure fluctuations from a DNS of turbulent channel flow will then be used to excite the plate. Unsteady stresses inside the plate and the resulting deformation will be discussed.

1Supported by NSWCCD

Sreevatsa Anantharamu
University of Minnesota - Twin Cities

Date submitted: 28 Jul 2017