Cluster-based Reduced-order Modelling of Flow in the Wake of a Seal-vibrissa-shaped Cylinder

ZHENG WEI, QILIANG LI, ZHIGANG YANG, CHAO XIA, Tongji University, SHANGHAI AUTOMOTIVE WIND TUNNEL CENTER TEAM — The flow around a seal-vibrissa-shaped cylinder is numerically calculated using large eddy simulation (LES) at the Reynolds number of 20000, along with a smooth and a twisted cylinder for comparison. The mean drag coefficient of the seal-vibrissa-shaped cylinder is lower than that of the smooth and twisted cylinders, respectively. The fluctuating lift coefficient of the seal-vibrissa-shaped cylinder shows a substantial decrease compared with the smooth cylinder. The seal-vibrissa-shaped surface leads to more stable wake, longer vortex formation length, higher base pressure and three-dimensional separation. In addition, cluster-based reduced-order modelling (CROM) is performed to analyze phase-dependent variations of the wake flow, which discloses the complex unsteady behavior in different cross sections. Meanwhile, two flow regimes, anti-phased and in-phase-dominated vortex shedding, generated by the twisted cylinder and the seal-vibrissa-shaped cylinder are distinguished and extracted, their interrelationship are evaluated, and the question how forces are affected is answered.

1Supported by the National Key Research and Development Program of China (2016YFB1200503-04) and the Shanghai Automotive Wind Tunnel Technical Service Platform (16DZ2290400).