Identification of coherent wavy motion in round turbulent jets

RUSTAM MULLYADZHANOV, Institute of Thermophysics SB RAS, Novosibirsk, Russia, RICHARD SANDBERG, University of Melbourne, Melbourne, Australia, SERGEY ABDURAKIPOV, Institute of Thermophysics SB RAS, Novosibirsk, Russia, WILLIAM GEORGE, Imperial College of Science, Technology and Medicine, London, United Kingdom, KEMAL HANJALIC, Delft University of Technology, Delft, The Netherlands — Large-scale coherent vortical structures are at the heart of free-shear turbulent flows, such as wakes, mixing layers and jets. These structures are involved in intensive mixing, entrainment and generation of aeroacoustic noise. We analyze direct numerical simulation data of a turbulent jet, performed with an in-house high-order finite-difference/pseudo-spectral code that solves the compressible Navier-Stokes equations. Using appropriate statistical tools we show that the jet dynamics can be represented as a superposition of propagating helical waves. We apply a snapshot-based Proper Orthogonal Decomposition to the azimuthally Fourier decomposed velocity fields for five cylindrical subdomains chosen at different downstream positions over a sufficiently long ensemble. We note that the main eigenfunctions with low non-zero azimuthal amplitudes come in pairs of (virtually) equal amounts of energy, taking the shape of helical vortices. Further decomposition of complex-valued temporal coefficients provides a convenient framework to analyze wavy motion downstream of the identified helical vortices and corresponding phase speed of these structures. The results show good agreement with the linear local stability analysis.

This work is funded by the RSF grant No. 14-19-01685.

William George
Imperial College of Science, Technology and Medicine