Quantifying polymer deformation in viscoelastic turbulence: the geometric decomposition and a Riemannian approach to scalar measures

ISMAIL HAMEDUDDIN, CHARLES MENEVEAU, TAMER ZAKI, DENNICE GAYME, The Johns Hopkins University — We develop a new framework to quantify the fluctuating behaviour of the conformation tensor in viscoelastic turbulent flows. This framework addresses two shortcomings of the classical approach based on Reynolds decomposition: the fluctuating part of the conformation tensor is not guaranteed to be positive definite and it does not consistently represent polymer expansions and contractions about the mean. Our approach employs a geometric decomposition that yields a positive-definite fluctuating conformation tensor with a clear physical interpretation as a deformation to the mean conformation. We propose three scalar measures of this fluctuating conformation tensor, which respect the non-Euclidean Riemannian geometry of the manifold of positive-definite tensors: fluctuating polymer volume, geodesic distance from the mean, and an anisotropy measure. We use these scalar quantities to investigate drag-reduced viscoelastic turbulent channel flow. Our approach establishes a systematic method to study viscoelastic turbulence. It also uncovers interesting phenomena that are not apparent using traditional analysis tools, including a logarithmic decrease in anisotropy of the mean conformation tensor away from the wall and polymer fluctuations peaking beyond the buffer layer.

This work has been partially funded by the following NSF grants: CBET-1652244, OCE-1633124, CBET-1511937.

Ismail Hameduddin
The Johns Hopkins University

Date submitted: 31 Jul 2017