Abstract Submitted for the DFD17 Meeting of The American Physical Society

Three-dimensional hydrodynamics of a suspended cylindrical canopy patch¹ JIAN ZHOU, SUBHAS VENAYAGAMOORTHY, Colorado State Univ — Three-dimensional large eddy simulations (LES) are carried out to determine the local hydrodynamics of a suspended canopy patch impinged by a uniform incident flow. The patches are circular (with bulk diameter D) and are made of rigid circular cylinders (height h and diameter d). Four different patch densities $(\phi = N_c d^2/D^2)$ and four different patch aspect ratios (AR = h/D) are considered by varying the number of cylinders in the patch (N_c) and the height of the patch (h), respectively. Based on a volumetric-flux budget through the patch surface, the bleeding dynamics inside and in the vicinity of the patch was found to be controlled not only by ϕ , but also remarkably by AR. The relative longitudinal bleeding normalized by the total flux entering the patch $(\hat{Q}_x=Q_x/Q_{influx})$ was observed to be inhibited by increasing ϕ but insensitive to the variation of AR; the relative lateral bleeding $(\hat{Q}_y = Q_y/Q_{influx})$ increases with either increasing ϕ or AR; and the relative vertical bleeding $(\hat{Q}_z = Q_z/Q_{influx})$ increases with increasing ϕ while decreases with increasing AR. However, for patches with a constant ϕ , an increase in AR contributes to enhance the absolute strength of vertical bleeding (Q_z) at the patch free end.

¹Funded by the Office of Naval Research and the National Science Foundation

Jian Zhou Colorado State Univ

Date submitted: 31 Jul 2017

Electronic form version 1.4