Abstract Submitted for the DFD17 Meeting of The American Physical Society

Interaction between double diffusion and differential diffusion in a stratified turbulent flow¹ CHRIS REHMANN, Iowa State University — Experiments were used to explore the interaction between salt fingering and differential diffusion. Studies of ocean mixing have demonstrated preferential transport (or differential diffusion) of heat when a flow stratified with stable profiles of temperature and salinity is stirred weakly. Therefore, in a flow with an initial density ratio R_{ρ} large enough to inhibit fingering, differential diffusion could reduce R_{ρ} enough that salt fingers form. Experiments with stirring rods were conducted and characterized by R_{ρ} and a turbulent Richardson number Ri_T . For $1 < R_{\rho} < 3$, salt finger fluxes dominated and caused the salinity to mix faster than the temperature. For $R_{\rho} > 4$, differential diffusion fluxes dominated and caused temperature to mix faster than salinity. As expected from previous experiments, effects of differential diffusion were stronger for large Ri_T . However, although stronger turbulence was expected to disrupt salt fingers, effects of fingering were stronger for small Ri_T . Mixing efficiencies were largest for conditions conducive to differential diffusion.

¹Funding provided by the National Science Foundation

Chris Rehmann Iowa State University

Date submitted: 01 Aug 2017

Electronic form version 1.4