Experiment and analysis of shock waves radiated from pulse laser focusing in a gelatin gel

NOBUYUKI NAKAMURA, KEITA ANDO, Keio Univ

A fundamental understanding of shock and bubble dynamics in human tissues is essential to laser application for medical purposes. Here, we experimentally study the dynamics of shock waves in viscoelastic media. A nanosecond laser pulse of wavelength at 532 nm and of energy up to 2.66 ± 0.09 mJ was focused through a microscope objective lens (10 x, NA = 0.30) into a gel of gelatin concentration at 3 and 10 wt%; a shock wave and a bubble can be generated, respectively, by rapid expansion of the laser-induced plasma and local heat deposition after the plasma recombines. The shock propagation and the bubble growth were recorded by a ultra-high-speed camera at 100 Mfps. The shock evolution was determined by image analysis of the recording and the shock pressure in the near field was computed according to the Rankine-Hugoniot relation. The far-field pressure was measured by a hydrophone. In the poster, we will present the decay rate of the shock pressure in the near and far fields and examine viscous effects on the shock dynamics.

1the Research Grant of Keio Leading-edge Laboratory of Science Technology