A Dual Scale Approach for Modeling Turbulent Liquid/Gas Phase Interfaces

MARCUS HERRMANN, DOMINIC KEDELTY, JAMES UGLIETTA, Arizona State University — Advances to a dual-scale modeling approach are presented to describe turbulent phase interface dynamics in a large-eddy-simulation-type spatial filtering context. Spatial filtering of the governing equations introduces several sub-filter terms that require modeling. Instead of developing individual closure-models for the terms associated with the interface, the dual-scale approach uses an exact closure by explicitly filtering a fully resolved realization of the phase interface. This resolved realization is maintained on a high-resolution over-set mesh using a Refined Local Surface Grid approach. The advection equation for the phase interface on this DNS scale requires a model for the fully resolved interface advection velocity. This velocity is the sum of the filter scale LES velocity, available from the LES flow solver, and the sub-filter velocity fluctuation that has two contributions. The first is due to sub-filter turbulent eddies, reconstructed using a local fractal interpolation technique (Scotti Meneveau, 1999), and the second is due to sub-filter surface tension forces, reconstructed using a local Taylor analogy approach. Results of the dual-scale model are compared to recent DNS of interfaces in homogeneous isotropic turbulence (Chiodi and Desjardins, 2017).

The support of NASA TTT grant NNX16AB07A is gratefully acknowledged.

Marcus Herrmann
Arizona State University

Date submitted: 01 Aug 2017
Electronic form version 1.4