Variable Density Turbulence Spectra using the Sparse-Direct Interaction Perturbation¹ DAVID PETTY, CARLOS PANTANO, University of Illinois Urbana Champaign — Equations for the turbulence kinetic energy, velocity-scalar, and scalar power spectra have been derived for homogeneous isotropic variable-density turbulence. A perturbation about the incompressible limit is used to determine the leading order variable-density contribution to the two-point statistical quantities. Closure is achieved using the Sparse Direct-Interaction Perturbation (SDIP) technique. The resulting integro-differential equations are solved using a custom developed numerical method which leverages the Automatic Differentiation by OverLoading in C++ (ADOL-C) library. The numerical solutions indicate only minor changes to the velocity fields due to turbulence-scalar coupling. However, dilatation production is shown to generate turbulence scalar flux divergence even under statistically isotropic conditions. In addition, the scalar power spectrum can undergo anti-correlation under certain conditions. These model spectra are compared to those calculated from Direct Numerical Simulation of the same flow fields.

¹The authors would like to thank the grant support for this research provided by the Air Force Office of Scientific Research, and the Department of Energy

David Petty
University of Illinois Urbana Champaign

Date submitted: 01 Aug 2017

Electronic form version 1.4