DNS of a non-equilibrium adverse pressure gradient turbulent boundary layer1 TAYGUN R. GUNGOR, AYSE G. GUNGOR, Istanbul Technical University, YVAN MACIEL, Laval University, MARK P. SIMENS, Universidad Politecnica de Madrid — A new direct numerical simulation (DNS) dataset of a non-equilibrium adverse pressure gradient (APG) turbulent boundary layer (TBL) that evolves from a zero-pressure-gradient (ZPG) TBL to a TBL which is very close to separation at Re_{θ} is around 8200 is presented. There are two simulations running together in the DNS computational setup. The APG TBL spans $Re_{\theta} = 1476 – 8276$. Mean velocity results do not satisfy the log law as the defect in the velocity increases. The production and the Reynolds stress peak are observed around $y/\delta^* = 1$ after the flow is evolved up to a certain point. The new dataset is compared with other datasets in terms of mean values, Reynolds stresses and turbulent kinetic energy budgets and using this comparison scaling study is performed.

1Funded by in part by ITU-AYP and NSERC of Canada

Ayse G. Gungor
Istanbul Technical University

Date submitted: 01 Aug 2017