Robust estimation of the integral scale for quantifying uncertainty of the sample mean from non-independent velocity data

GEORDIE RICHARDS, Utah State University, DOUGLAS NEAL, LaVision Inc., BARTON SMITH, Utah State University — Using large data sets, we evaluate statistical bootstrapping schemes for approximating uncertainty in the sample mean of highly correlated velocity field measurements. Interest in time-resolved velocity field data has led to sampling rates high enough that non-independent samples are commonplace. Uncertainty of the sample mean collected from stationary but correlated data is given by $s / \sqrt{N_{\text{eff}}}$, where s is the standard deviation of the samples, and N_{eff} is the "effective" number of samples, that is, the number of samples N divided by twice the integral time scale T_u. We can approximate T_u using a sum of auto-correlation coefficients, but it is necessary to truncate the sum at a prescribed lag K. This lag parameter K is equivalent to a bootstrapping parameter in statistics, and we can optimize selection of K using techniques from the bootstrapping methodology. With highly resolved data from laminar and turbulent velocity field measurements we will evaluate different strategies for this statistical bootstrap optimization.

Douglas Neal
LaVision Inc.

Date submitted: 01 Aug 2017