On the existence of an overlap region between the Greens function for a locally parallel axi-symmetric jet and the leading order non-parallel flow solution\(^1\) VASILIS SASSANIS, Mississippi State University, MOHAMMED AFSAR, University of Strathclyde, ADRIAN SESCU, Mississippi State University, SANJIVA LELE, Stanford University — We consider determination of the propagator within the generalized acoustic analogy for prediction of supersonic jet noise. The propagator is a tensor functional of the adjoint vector Greens function that requires solution of the linearized Euler equations for a given mean flow. The exact form of these equations can be obtained for a spreading jet. However since high Reynolds number jets have small spread rates, \(\epsilon < < O(1)\), this parameter can be exploited to formulate an asymptotic model that encompasses mean flow spatial evolution at leading order. Such a model was used by Afsar et al. (AIAA-2017-3030 for prediction of supersonic jet noise. We show the existence of an overlap between this solution (valid at low frequencies) and one based on a locally parallel (i.e. non-spreading) mean flow, valid at \(O(1)\) frequencies. It is clear that there must exist an overlap between these solutions, since the former non-parallel solution was determined at the distinguished limit where the scaled frequency \(\Omega = \omega/\epsilon = O(1)\) was held fixed. Hence the inner equation shows that as \(\Omega \to \infty\), non-parallelism will be confined to a thin streamwise region of size \(O(\Omega^{-1})\) and will, therefore, be subdominant at leading order when \(\Omega \bar{Y} = \bar{Y} = O(1)\).

\(^1\)M.Z.A. would also like to thank Strathclyde University for financial support from the Chancellors Fellowship.

Mohammed Afsar
University of Strathclyde

Date submitted: 12 Sep 2017

Electronic form version 1.4