50 kHz PIV Investigation of Swept Compression Ramp Shock / Boundary Layer Interactions

LEON VANSTONE, Univ of Texas, Austin,
MUSTAFA NAIL MUSTA, Necmettin Erbakan University,
SERDAR SECKIN, NOEL CLEMENS, Univ of Texas, Austin,
HIGH SPEED WIND TUNNEL LAB TEAM

The shock/boundary-layer interaction (SBLI) of a swept (30°) compression ramp (22.5°) in a Mach 2 flow is examined using 5 Hz and 50 kHz PIV in both streamwise-transverse and streamwise-spanwise planes. The mean u-velocity component exhibits conical symmetry in accord with previous studies, but the weaker velocity components (v, w) do not. We argue that moderately-swept interactions possess an extended inception region where the separated flow takes additional distance to reach its asymptotic state. The high-speed PIV is band-pass filtered to investigate driving mechanisms of unsteadiness of the separated flow. We looked at three distinct frequency bands: low (0-1 kHz), mid (1-10 kHz), and high (10-50 kHz). Unlike unswept interactions, the majority (80% of the unsteadiness of this swept-ramp SBLI is then compared to a similar unswept compression ramp to show differences between 2D and 3D interactions.

This work is sponsored by the AFOSR under grant FA9550-14-1-0167 with Ivett Leyva as the program manager. This source of support is gratefully acknowledged. Further, Mustafa Musta thanks the Scientific and Technological Research Council of Turkey.