Mixing in stratified fluids induced by bubble swarms

ABRIL AMEZCUA-MONTIEL, ANGEL RUIZ-ANGULO, ROBERTO ZENIT, Universidad Nacional Autonoma de Mexico, B. SUBRAMANIAN, PAOLO LUZZATTO-FEGIZ, University of California Santa Barbara, MARCO CARMINATI, Politecnico di Milano — The mixing dynamics induced by bubble swarms rising across a sharp stably-stratified density interface are studied experimentally. In the middle of a column, an interface separates two Newtonian-miscible-liquids: fresh water and brine. The bubble swarm is injected from the bottom with a bank of small capillaries. When the bubbles cross the interface, they drag denser fluid into the upper lighter fluid and then some denser fluid returns to the lower layer (Diaz-Damacillo et al., 2015). This process induces mixing. We record the bubble with a high speed camera and track the temporal evolution of the fluids conductivity with a Conduino (Carminati and Luzzatto-Fegiz, 2017). We obtain the mixing coefficient, D_b, by fitting the concentration profiles to a simplified advection-diffusion equation, $\partial c/\partial t = D_b \nabla^2 c$. Experiments are conducted for a range of gas volume fractions and density contrasts between the fluids. Finally, we discuss the implications of our results for lake and ocean mixing.

Roberto Zenit
Universidad Nacional Autonoma de Mexico

Date submitted: 01 Aug 2017