Abstract Submitted for the DFD17 Meeting of The American Physical Society

A new vortex definition for compressible and stratified flows JIE YAO, FAZLE HUSSAIN, Texas Tech University — We propose an objective vortex identification method (call it ' λ_{ρ} criterion') for flows dominated by compressibility or density variation effects, where the standard λ_2 method is not expected to be valid. The new λ_{ρ} criterion - which is a direct extension of λ_2 criterion for incompressible flow - defines a vortex to be the region where the second eigenvalue of the tensor $\mathbf{S}^{\mathbf{m}} + \mathbf{S}^{\vartheta}$ is negative. Here, $\mathbf{S}^{\mathbf{m}}$ is the symmetric part of the tensor product of the momentum gradient tensor $\nabla(\rho \mathbf{u})$ and the velocity gradient tensor $\nabla(\mathbf{u})$; \mathbf{S}^{ϑ} is the symmetric part of dilatation-momentum gradient tensor $\nabla(\vartheta \rho \mathbf{u})$; and $\vartheta \equiv \nabla \bullet \mathbf{u}$ is the dilatation rate. We demonstrate the difference between λ_{ρ} and λ_{2} boundaries for the compressible isentropic vortex column. We also compare the λ_{ρ} and λ_2 structures for several numerically simulated flows, e.g., liquid jet breakup in air, compressible jet, compressible wake, and shock-turbulent boundary layer interactions. For low Mach number (Ma < 2) compressible flows, we find that the structures identified by λ_2 and λ_{ρ} definitions are nearly identical - indicating that λ_2 method can still be used for low Mach number compressible flows.

> Jie Yao Texas Tech University

Date submitted: 25 Sep 2017

Electronic form version 1.4