Hysteresis and Bistable Behavior in Low Reynolds Number Flow Over a Cylinder With a Slanted Afterbody

FERNANDO ZIGUNOV, PRABU SELLAPPAN, FARRUKH ALVI, FAMU-FSU College of Engineering — A cylinder with a slanted afterbody is a bluff body that has a wake pattern similar to aircraft fuselage wakes. Recent work (Bulathsinghala et. al, 2017; Zigunov et. al, 2019) improved our understanding of the vortex-dominated regime of this wake, where a pair of counter-rotating vortices is formed. Steepening the slant angle above a critical value causes the vortex-dominated wake to transition to a fully-separated ("stalled") wake, with a subsequent increase in unsteadiness and a significant drop in form drag. The current investigation shows the full three-dimensional flow topology of the two wake states, reconstructed through stacked stereoscopic particle image velocimetry (S-SPIV). The wake state transition is found to be a function of Reynolds number for a fixed slant angle and the wake presents a hysteretical behavior when the Reynolds number is slowly varied. The hysteresis effect is further detailed in this investigation through fully time-resolved, high-speed PIV, and physical insight into the flow instability mechanisms that contribute to this effect is presented.

1This research is made possible through the support of the Air Force Office for Scientific Research (AFOSR), grant no. FA9550-17-1-0228