Abstract Submitted for the DFD19 Meeting of The American Physical Society

Three-dimensional Hiemenz Stagnation-Point Flows PATRICK WEIDMAN, Department of Mechanical Engineering — A modification of Hiemenz's two-dimensional outer potential stagnation-point flow of strain rate a is obtained by adding periodic radial and azimuthal velocities of the form $br \sin 2\theta$ and $br \cos 2\theta$, respectively, where b is a shear rate. This leads to the discovery of a new family of three-dimensional viscous stagnation-point flows depending on the shear-to-strain rate ratio $\gamma = b/a$ that exist over the range $-\infty < \gamma < \infty$ with reflectional symmetry about $\gamma = 0$. Numerical solutions for the wall shear stress parameters and the displacement thicknesses are given and compared with their large- γ asymptotic behaviors. Sample similarity profiles are also presented.

Patrick Weidman Department of Mechanical Engineering

Date submitted: 26 Jul 2019

Electronic form version 1.4