Viscous Drag Reduction on a NACA 63012A Airfoil

KATHERINE YATES, ALAN DUONG, THOMAS CORKE, FLINT THOMAS
University of Notre Dame — A series of wind tunnel experiments were performed in which an array of flush mounted pulsed-DC plasma actuators were utilized to reduce the skin friction drag on a NACA 63012A airfoil over a Mach number range of $0.20 \leq M_\infty \leq 0.50$ at zero angle of attack. The array of plasma actuators were designed to inhibit the lift-up and subsequent break-up of the low-speed wall streak structure to prevent the formation of streamwise vortices; a key element in wall-bounded turbulence generation. Experiments were done with two sets of actuator arrays: 1) with the electrodes aligned in the mean flow direction and 2) with the electrodes oriented 5 degrees offset to the oncoming flow. The aerodynamic load (viscous drag) was measured directly using an integrated floating element force balance. Viscous drag reduction of up to 47% was observed depending on the operating parameters of the plasma actuators. Net power savings were also achieved across the range of Mach numbers tested.

1Supported by DARPA Phase II D17PC00073
2Student Member
3Student Member
4APS Fellow
5APS Associate Fellow

Date submitted: 29 Jul 2019
Electronic form version 1.4