Abstract Submitted for the DFD19 Meeting of The American Physical Society

Free-Fall Estimates for Rapidly Rotating Heat and Momentum Transport¹ JONATHAN AURNOU, UCLA, SUSANNE HORN, Coventry University, KEITH JULIEN, CU Boulder — Dimensional analysis is employed here to provide free-fall scaling estimates for the convective heat and momentum transport in the limit of rapid rotation, and to relate these to scalings for non-rotating Rayleigh-Bénard convection (RBC) systems. Our analysis shows that the scalings for free-fall dominated heat (Nusselt number, Nu) and momentum transfer (Reynolds number, Re) of rapidly rotating convection differ from their non-rotating RBC counterparts by a factor of Ro_{ff}^2 , where $Ro_{ff} = \tau_{\Omega}/\tau_{ff}$ is the free-fall Rossby number defined as the ratio of the characteristic rotation time τ_{Ω} and the buoyant free-fall time τ_{ff} . Since $Ro_{ff} \ll 1$ in the rapidly rotating limit, our predicted rapidly rotating, free-fall transport rates remain far below the associated rates in non-rotating systems.

¹Carried out via support from the NSF Geophysics Program

Jonathan Aurnou UCLA

Date submitted: 30 Jul 2019

Electronic form version 1.4